
Jurnal Mahajana Inforamasi, Vol.2 No 1, 2017
e-ISSN: 2527-8290

37

Concurrent Access Algorithms for Different Data Structures: A
Research Review

Parminder Kaur
Program Study of Information System University Sari Mutiara, Indonesia

Parm.jass89@gmail.com

Abstract
Algorithms refers to a finite set of steps, which when followed solves a number of problems
and algorithams for concurrent data structure have gained attention in recent years as multi-
core processors have become ubiquitous. Several features of shared-memory multiprocessors
make concurrent data structures significantly more difficult to design and to verify as correct
than their sequential counterparts. The primary source of this additional difficulty is
concurrency. This paper provides an overview of the some concurrent access algorithms for
different data structures.

Keywords: concurrency, lock-free, non-blocking, mem-ory management, compares and
swap, elimination.

1. Introduction

The logical and mathematical model used
to organize the data in the main memory is
called Data Structure.A concurrent data
structure is a particular way of storing and
organizing data for access by multiple
computing threads or processes on a
computer. Designing concurrent data
structures and ensuring their correctness is a
difficult task, significantly more challenging
than doing so for their sequential counterparts.
The difficult of concurrency is aggravated by
the fact that threads are asynchronous since
they are subject to page faults, interrupts, and
so on To manage the difficulty of concurrent
programming, multithreaded applications need
synchronization to ensure threadsafety by
coordinating the concurrent accesses of the
threads. At the same time, it is crucial to allow
many operations to make progress
concurrently and complete without
interference in order to utilize the parallel
processing capabilities of contemporary
architectures. The traditional way to
implement shared data structures is to use
mutual exclusion (locks) to ensure that
concurrent operations do not interfere with one

another. In response, researchers have
investigated a variety of alternative
synchronization techniques that do not employ
mutual exclusion. A synchronization technique
is wait-free if it ensures that every thread will
continue to make progress in the face of
arbitrary delay (or even failure) of other
threads. It is lock-free if it ensures only that
some thread always makes progress. While
waitfree synchronization is the ideal behavior
(thread starvation is unacceptable), lock-free
synchronization is often good enough for
practical purposes (as long as starvation, while
possible in principle, never happens in
practice).The synchronization primitives
provided by most modern architectures, such
as compare-and-swap (CAS) or load-
locked/store-conditional (LL/SC) are powerful
enough to achieve wait-free (or lock-free)
implementations of any linearizable data
object [23]. The remaining paper will
discussed about the different data structures,
concurrency control methods and various
techniques given for the concurrent access to
these data structures.

Jurnal Mahajana Inforamasi, Vol.2 No 1, 2017
e-ISSN: 2527-8290

38

2. Data Structures

We can store and organize data in diffrent
ways where data structure is the one example
to do so.Various data structures are available
to make the processing easy to represent the
data in the memory of the computer.These data
structures have diffrent features and these
features should be kept in mind while
choosing to use. Logical and mathematical
model are used in data structure to organize
the data. So diffrent kind of data structures are
suited to diffrent kinds of applications.Data
structure are divided into two categories,
which are linear data structure and non-
linear data structure.

1.Linear Data Structure: this data
structure is one in which elements of data
forms a sequence. The most, simplest linear
data structure is a 1-D array.

A[0] A[1] A[2] A[3] A[4] A[5]
Figure:- A 1-D array of 6 elements.

2.Non-Linear Data Structure: this is the
one in which its elements do not form a
sequence.it means, unlike a linear data
structure, each element is not considered to
have a unique predecessor and a unique
successor. Graphs and trees are the two data
structure which comes under this category.

2.1 Linear Data Structure

As we have already described thet what the
linear data structure is. So now we will discuss
the types of linear data struture.

1.ARRAY: a finite collection of
homogeneous elements is called an
ARRAY. Here, the word ‘homogeneous’
indicates the the data types in all the elements
in the collection should be same. That is INT
or CHAR or FLOAT or any built in or user-
define data type.

Elements of an array are always stored in
contigous memory locations irrespective of the
array size. The elements of an array can be
referred to by using one or more indices or
subscripts. An indices or a subscript is a +ve
inteher vaalue, which indcates a position of a
particular element in the array. If the number
of subscriots required to access any particular
element ia an array in one, then it is a single-
dimensional array. Otherwise it is multi-
dimensional array that may be 2-D, 3-d array
and so on.

Single-Dimesional Array: a single-
dimensional array is defined as an array in
which only one subscript value is used to
access its elements. It is the simple and easy
form of an array. Before using an array in
program, it needs to be declared. Syntax of
single-dimensional array’s declaration in C is:-

Data_type array _name[Size];

Subscript values

0 1 2 3 4

A=1000 1002 1004 1006 1008

Base address denoted by array name A

Figure 1.1 Base address and Subscript
values of an Array

In this declaration, an integer array og five
elements is declared. The array name A
refers to the base address of the array.array
elements are indexed from 0 to 4 .

Two-Dimensional Array: before we
explain two-diensional array, we will have a
look on syntax of declaring a two-dimensional
array that is :-

Data_type array_name [row_size][column_size];

For example, in the statement int a[3][3], an
integer array of three rows and three columns

Jurnal Mahajana Inforamasi, Vol.2 No 1, 2017
e-ISSN: 2527-8290

39

are declared. Once a compiler reads a two-
dimensional array declaration, it allocates a
specific amount of memory for this array.

Row 1 Row 2 Row 3

1 2 3 4 5 6 7 8 9
Two-dimensional array in ROW major order

Col1 Col2 Col3

1 4 7 2 5 8 3 7 9
Two-dimensional array in column major order

Linked Lists:- same withe arrays, there

is also another name included in linear data
structure which is called Linked Lists.
Linked list is a linear collection of similar data
elements(collection of elements listed by
sequence), called nodes, with each node
containing some data and pointer pointing to
other nodes in the list.nodes of a linked list can
be stored anywhere in the memory. The linear
order of the list is maintained by the pointer
field in each node.

Singly linked list:- in singly linked list,
each node consist of two fields: info and next.
The info field contains the data and next field
contains the address of memory location where
the next code is stored.the last node ofa singly
linked list is NULL in its next field indicates
the end of list.

(a) singly linked list

Circular linked list :- a linear linked list in
which the next field of the last node points
back to the first node instead of containing
NULL values is called as circular linked list.
The main advantage of circular linked list over
linear linked list is that by starting with any
node in th list, we can reach any of its
predecessor nodes.

(b) circular linked list

Double linked list:- in singly linked list,
each node contains a pointer to the next node
and it has no information about the previous
node.thus, we traverse only in one direction
that is only from beginning to end and
sometimes it is required to traverse in the
backward direction that is from end to
beginning. This can be implemented by
maintaining an additional [pointer in each
node of the list that points towards the end.
Such types of linked lists are called Double
linked lists.

Each node of doubly linked list consist of thre
fields: prev,info and next. The info field
contain data, the prev field contains the
address of previous field and the next node
contains the address of the next node.

Prev Info Next

. data .

(b) doubly linked list.
(c)

Jurnal Mahajana Inforamasi, Vol.2 No 1, 2017
e-ISSN: 2527-8290

40

a. Stack

A stack is a linear list of data elements in
which addition or deletion of new elements
occurs only at one end. This is called TOP of
the stack. The operation of adding a new
element and deleting a new element is the
stack is called PUSH and POP. The last item
added to the stack is removed first from the
stack. Therefore a stack is called out Last-in-
First-Out (LIFO) list.

A pile of books in the comman example of
stack. A new to be added to the top of the pile
is placed at the top and a book to be removed
is also taken off from the top. The book that is
most recently put on the pile is the first one to
taken off from the pile. Similarly the book at
the bottom is the last one to removed. Two
operations are used in the stack that is PUSH
and POP. Push is used to enter the values in
the stack whereas POP is used to delete the
values from the stack.

A stack with elements

In this diagram of stack push inserts the new
element in the stack where as pop is used to
delete the element from the stack. To insert the
data element 1 in a STACK, TOP is
incremented by 1 and the data item is stored at
the top of the Stack. To pop the element from
the stack, one element is taken off from the
stack and TOP is decremented by 1. Similarly,
other data items can be removed from the
stack untill the stack is not empty.

b. Queue

A queue is a linear data structure in which
addition or insertion of a new element occurs
at the one end called REAR and deletion of
an element occurs at the other end which is
called FRONT. Since insertion and deletion
occurs at the opposite ends of the Queue, the
first element that is inserted in the queue is the
first one to come out. Therefore this queue is
also called First-in-First-Out(FIFO).

A queue with elements

In this diagram 1 is the first element to insert
in the queue and the first one to delete from
the queue. Other elements will join in the end
to the first element for insertion as well
deletion.

2.2 NON-LINEAR DATA
STRUCTURE

As earlier we have discussed linear data
strutures in which data elements makes a
sequence. But unlike linear data strutures,
non-linear data in the one in which its
elements do not form a sequence means each
element is not constrained to have a unique
predecessor and a unique successor. Trees and
graphs are the two data structures which
comes under this category.

a. Trees

Many a times, we observe hierarchical
relationship between various data elements.

This hierarchical relationship between data
elements can be easily represent using a non-
linear data structure which is called a tree. A
tree consist of multiple nodes with each node
containing zero,one or more pointers to other
nodes called child nodes. Each node of a tree

Jurnal Mahajana Inforamasi, Vol.2 No 1, 2017
e-ISSN: 2527-8290

41

has one parent except a special node at the top
of the tree called root node of the tree and the
nodes at the lowest level are known as leaf
nodes. The root node is a special node having
no parent node and leaf nodes are the nodes
having no child nodes. Any node having a
child node as well as parent node is called
internal node.

A Tree Structure

There is a special type of tree which is called
BINARY tree, which can be either empty or
has a finite set of nodes, such as one of the
nodes is designated as ROOT node and the
remaining nodes are partitioned into two
subtrees of the root node is called left subtree
and right subtree. The non-empty left sub-
tree and right sub-tree are also binary sub-tree.
Unlike a general tree,each node in a binary
tree is restricted to have the most only two
child nodes.

A binary tree

In the above binary tree, root node have left
and right subtree , which also have their left
and right subtrees respectively. Every node
have only two nodes, not more than that.

b. Graph

Formally, a graph G(V,E) consists of a pair of
two non-empty sets V and E, where V is a
vector or nodes and E is set of Edges. Graphs
are used to represent the non-hierarchical
relationship among the pairs of data elements.
The data is represented graphically by graph.
The data elements become the vertices of the
graph and the relationship is shown by the
edges between two vertices.

A Graph

2.3 Concurrency Control

Simultaneous execution of multiple
threads/process over a shared data structure
access can create several data integrity and
consistency problems:

• Lost Updates.

• Uncommitted Data.

• Inconsistent retrievals

All above are the reasons for introducing the
concurrency control over the concurrent access
of shared data structure. Concurrent access to
data structure shared among several processes
must be synchronized in order to avoid
conflicting updates. Synchronization is
referred to the idea that multiple processes are
to join up or handshake at a certain points, in
order to reach agreement or commit to a
certain sequence of actions. The thread
synchronization or serialization strictly defined
is the application of particular mechanisms to

Jurnal Mahajana Inforamasi, Vol.2 No 1, 2017
e-ISSN: 2527-8290

42

ensure that two concurrently executing threads
or processes do not execute specific portions
of a program at the same time. If one thread
has begun to execute a serialized portion of the
program, any other thread trying to execute
this portion must wait until the first thread
finishes. Concurrency control techniques can
be divided into two categories.

• Blocking

• Non-blocking

Both of these are discussed in below sub-
sections.

a. Blocking

Blocking algorithms allow a slow or delayed
process to prevent faster processes from
completing operations on the shared data
structure indefinitely. On asynchronous
(especially multiprogrammed) multiprocessor
systems, blocking algorithms suffer significant
performance degradation when a process is
halted or delayed at an inopportune moment.
Many of the existing concurrent data structure
algorithms that have been developed use
mutual exclusion i.e. some form of locking.

Mutual exclusion degrades the system’s
overall performance as it causes blocking, due
to that other concurrent operations cannot
make any progress while the access to the
shared resource is blocked by the lock. The
limitation of blocking approach are given
below :-

• Priority Inversion: occurs when a high-
priority process requires a lock holded by a
lower-priority process.

• Convoying: occurs when a process holding a
lock is rescheduled by exhausting its quantum,
by a page fault or by some other kind of
interrupt. In this case, running processes
requiring the lock are unable to progress

• Deadlock: can occur if different processes
attempt to lock the same set of objects in
different orders.

• Locking techniques are not suitable in a real-
time context and more generally, they suffer
significant performance degradation on
multiprocessors systems.

b. Non-Blocking

Non-blocking algorithm Guarantees that the
data structure is always accessible to all
processes and an inactive process cannot
render the data structure inaccessible. Such an
algorithm ensures that some active process
will be able to complete an operation in a
finite number of steps making the algorithm
robust with respect to process failure [22]. In
the following sections we discuss various non-
blocking properties with different strength.

Wait-Freedom: A method is wait-free if
every call is guaranteed to finish in a finite
number of steps. If a method is bounded wait-
free then the number of steps has a finite upper
bound, from this definition it follows that wait-
free methods are never blocking, therefore
deadlock cannot happen. Additionally, as each
participant can progress after a finite number
of steps (when the call finishes), wait-free
methods are free of starvation.

Lock-Freedom: Lock-freedom is a weaker
property than wait-freedom. In the case of
lock-free calls, infinitely often some method
finishes in a finite number of steps. This
definition implies that no deadlock is possible
for lock-free calls. On the other hand, the
guarantee that some call finishes in a finite
number of steps is not enough to guarantee
that all of them eventually finish. In other
words, lock-freedom is not enough to
guarantee the lack of starvation.

Obstruction-Freedom: Obstruction-freedom
is the weakest non-blocking guarantee
discussed here. A method is called
obstruction-free if there is a point in time after

Jurnal Mahajana Inforamasi, Vol.2 No 1, 2017
e-ISSN: 2527-8290

43

which it executes in isolation (other threads
make no steps, e.g.: become suspended), it
finishes in a bounded number of steps. All
lockfree objects are obstruction-free, but the
opposite is generally not true. Optimistic
concurrency control (OCC) methods are
usually obstruction-free. The OCC approach is
that every participant tries to execute its
operation on the shared object, but if a
participant detects conflicts from others, it
rolls back the modifications, and tries again
according to some schedule. If there is a point
in time, where one of the participants is the
only one trying, the operation will succeed.

In the sequential setting, data structures are
crucially important for the performance of the
respective computation. In the parallel
programming setting, their importance
becomes more crucial because of the increased
use of data and resource sharing for utilizing
parallelism. In parallel programming,
computations are split into subtasks in order to
introduce parallelization at the
control/computation level. To utilize this
opportunity of concurrency, subtasks share
data and various resources (dictionaries,
buffers, and so forth). This makes it possible
for logically independent programs to share
various resources and data structures.

Concurrent data structure designers are
striving to maintain consistency of data
structures while keeping the use of mutual
exclusion and expensive synchronization to a
minimum, in order to prevent the data
structure from becoming a sequential
bottleneck. Maintaining consistency in the
presence of many simultaneous updates is a
complex task. Standard implementations of
data structures are based on locks in order to
avoid inconsistency of the shared data due to
concurrent modifications. In simple terms, a
single lock around the whole data structure
may create a bottleneck in the program where
all of the tasks serialize, resulting in a loss of
parallelism because too few data locations are
concurrently in use. Deadlocks, priority

inversion, and convoying are also side-effects
of locking. The risk for deadlocks makes it
hard to compose different blocking data
structures since it is not always possible to
know how closed source libraries do their
locking. Lock-free implementations of data
structures support concurrent access. They do
not involve mutual exclusion and make sure
that all steps of the supported operations can
be executed concurrently. Lock-free
implementations employ an optimistic conflict
control approach, allowing several processes
to access the shared data object at the same
time. They suffer delays only when there is an
actual conflict between operations that causes
some operations to retry. This feature allows
lock-free algorithms to scale much better when
the number of processes increases. An
implementation of a data structure is called
lock-free if it allows multiple
processes/threads to access the data structure
concurrently and also guarantees that at least
one operation among those finishes in a finite
number of its own steps regardless of the state
of the other operations. A consistency (safety)
requirement for lock-free data structures is
linearizability [24], which ensures that each
operation on the data appears to take effect
instantaneously during its actual duration and
the effect of all operations are consistent with
the object’s sequential specification. Lock-free
data structures offer several advantages over
their blocking counterparts, such as being
immune to deadlocks, priority inversion, and
convoying, and have been shown to work well
in practice in many different settings.

The remaining paper will explore the access of
different data structures like stack, queue,
trees, priority queue, and linked list in
concurrent environment. How the sequence of
data structure operations changes during
concurrent access. These techniques will be
based on blocking and non-blocking.

III.Literature Review

a. Stack Data Structure

Jurnal Mahajana Inforamasi, Vol.2 No 1, 2017
e-ISSN: 2527-8290

44

Stack is the simplest sequential data structures.
Numerous issues arise in designing concurrent
versions of these data structures, clearly
illustrating the challenges involved in
designing data structures for shared-memory
multiprocessors. A concurrent stack is a data
structure linearizable to a sequential stack that
provides push and pop operations with the
usual LIFO semantics. Various alternatives
exist for the behavior of these data structures
in full or empty states, including returning a
special value indicating the condition, raising
an exception, or blocking.

There are several lock-based concurrent stack
implementations in the literature. Typically,
lock-based stack algorithms are expected to
offer limited robustness.

The first non-blocking implementation of
concurrent link based stack was first proposed
by Trieber et al [1]. It represented the stack as
a singly linked list with a top pointer. It uses
compare-and-swap to modify the value of Top
atomically. However, this stack was very
simple and can be expected to be quite
efficient, but no performance results were
reported for nonblocking stacks. When
Michael et. al [2] compare the performance of
Treiber’s stack to an optimized nonblocking
algorithm based on Herlihy’s methodology
[28], and several lock-based stacks such as an
MCS lock in low load situations[29]. They
concluded that Treiber’s algorithm yields the
best overall performance, but this performance
gap increases as the degree of
multiprogramming grows. All this happen due
to contention and an inherent sequential
bottleneck.

b. Queue Data Structure

A concurrent queue is a data structure that
provides enqueue and dequeue operations with
the usual FIFO semantics. Valois presented a
list-based non blocking queue. The represented
algorithm allows more concurrency by
keeping a dummy node at the head (dequeue
end) of a singly linked list, thus simplifying

the special cases associated with empty and
single-item. Unfortunately, the algorithm
allows the tail pointer to lag behind the head
pointer, thus preventing dequeuing processes
from safely freeing or reusing dequeued nodes.
If the tail pointer lags behind and a process
frees a dequeued node, the linked list can be
broken, so that subsequently enqueued items
are lost. Since memory is a limited resource,
prohibiting memory reuse is not an acceptable
option. Valois therefore proposed a special
mechanism to free and allocate memory. The
mechanism associates a reference counter with
each node. Each time a process creates a
pointer to a node it increments the node's
reference counter atomically. When it does not
intend to access a node that it has accessed
before, it decrements the associated reference
counter atomically. In addition to temporary
links from processlocal variables, each
reference counter reflects the number of links
in the data structure that point to the node in
question. For a queue, these are the head and
tail pointers and linked-list links. A node is
freed only when no pointers in the data
structure or temporary variables point to it.
Drawing ideas from the previous authors,
Michel et.al [5] presented a new non-blocking
concurrent queue algorithm, which is simple,
fast, and practical. The algorithm implements
the queue as a singly-linked list with Head and
Tail pointers. Head always points to a dummy
node, which is the first node in the list. Tail
points to either the last or second to last node
in the list. The algorithm uses compare and
swap, with modification counters to avoid the
ABA problem. To allow dequeuing processes
to free dequeue nodes, the dequeue operation
ensures that Tail does not point to the
dequeued node nor to any of its predecessors.
This means that dequeued nodes may safely be
re-used.

The Mark introduced a scaling technique for
queue data structure which was earlier applied
to LIFO data structures like stack. They
transformed existing nonscalable FIFO queue
implementations into scalable implementations

Jurnal Mahajana Inforamasi, Vol.2 No 1, 2017
e-ISSN: 2527-8290

45

using the elimination technique, while
preserving lock-freedom and linearizability

In all previously FIFO queue algorithms,
concurrent Enqueue and Dequeue operations
synchronized on a small number of memory
locations, such algorithms can only allow one
Enqueue and one Dequeue operation to
complete in parallel, and therefore cannot
scale to large numbers of concurrent
operations. In the LIFO structures elimination
works by allowing opposing operations such
as pushes and pops to exchange values in a
pair wise distributed fashion without
synchronizing on a centralized data structure.
This technique was straightforward in LIFO
ordered structures . However, this approach
seemingly contradicts in a queue data
structure, a Dequeue operation must take the
oldest value currently waiting in the queue. It
apparently cannot eliminate with a concurrent
Enqueue. For example, if a queue contains a
single value 1, then after an Enqueue of 2 and
a Dequeue, the queue contains 2, regardless of
the order of these operations.

c. Linked List Data Structure

Implementing linked lists efficiently is very
important, as they act as building blocks for
many other data structures. The first
implementation designed for lock-free linked
lists was presented by Valois . The main idea
behind this approach was to maintain auxiliary
nodes in between normal nodes of the list in
order to resolve the problems that arise
because of interference between concurrent
operations. Also, each node in his list had a
backlink pointer which was set to point to the
predecessor when the node was deleted. These
backlinks were then used to backtrack through
the list when there was interference from a
concurrent deletion. Another lock-free
implementation of linked lists was given by
Harris. His main idea was to mark a node
before deleting it in order to prevent
concurrent operations from changing its right
pointer. The previous approach was simpler

than later one. Yet another implementation of
a lock-free linked list was proposed. The
represented Technique used design to
implement the lock free linked list structure.
The represented algorithm was compatible
with efficient memory management techniques
unlike algorithm.

d. Tree Data Structure

A concurrent implementation of any search
tree can be achieved by protecting it using a
single exclusive lock. Concurrency can be
improved somewhat by using a reader-writer
lock to allow all read-only (search) operations
to execute concurrently with each other while
holding the lock.

e. Priority Queue Data Structure

The Priority Queue abstract data type is a
collection of items which can efficiently
support finding the item with the highest
priority. Basic operations are Insert (add an
item), FindMin (finds the item with minimum
(or maximum) priority), and DeleteMin
(removes the item with minimum (or
maximum) priority). Delete Min returns the
item removed.

IV. Conclusion

This paper reviews the different data structures
and the concurrency control techniques with
respect to different data structures (tree, queue,
priority queue). The algorithms are categorized
on the concurrency control techniques like
blocking and non-blocking. Former based on
locks and later one can be lock-free, wait-free
or obstruction free. In the last we can see that
lock free approach outperforms over locking
based approach.

References

[1] G. Hunt, M. Michael, S. Parthasarathy,
and M. Scott. “An efficient algorithm for
concurrent priority queue heaps.”

Jurnal Mahajana Inforamasi, Vol.2 No 1, 2017
e-ISSN: 2527-8290

46

Information Processing Letters, 60(3):
151–157, November 1996

[2] LOTAN, N. SHAVIT. “Skiplist-Based
Concurrent Priority Queues”, International
Parallel and Distributed Processing
Symposium, 2000.

[3] M. Greenwald. “Non-Blocking
Synchronization and System Design.” PhD
thesis, Stanford University Technical
Report STAN-CS-TR-99-1624, Palo Alto,
A, 8 1999.

[4] N. Shavit and D. Touitou. “Elimination
trees and the construction of pools and
stacks.” Theory of Computing Systems,
30:645–670, 1997.

[5] R. Ayani. “LR-algorithm: concurrent
operations on priority queues.” In
Proceedings of the 2nd IEEE Symposium
on Parallel and Distributed Processing,
pages 22–25, 1991

[6] W. Pugh. Skip Lists: “A Probabilistic
Alternative to Balanced Trees.” In
Communications of the ACM,
33(6):668{676, June 1990.

